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Abstract
Antarctica is the largest potential contributor to sea-level rise and needs to be monitored. It is also 
one of the first victims of global warming. However, it is often difficult to obtain high-resolution 
data on this vast and distant continent. Thanks to the Copernicus space program providing free 
and open access to high-quality data, this paper aims to show the complementarity between 
Sentinel-1 images and Modèle Atmosphérique régional (MAR) data over Antarctica. This study 
is conducted over Roi Baudouin Ice Shelf. The complementarity between the two datasets is 
established by a quantitative, temporal, and spatial comparison of the amplitude information 
of the radar signal and several variables modelled by MAR. Comparisons show strong spatial 
correlations between MAR variables representing melt and the backscatter coefficient recorded 
by the satellite. While temporal and quantitative analyses also give impressive results, further 
investigations are required to explain contrasting behaviors in other different areas of the ice shelf.
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Résumé
L’Antarctique est le plus grand contributeur potentiel à l’élévation du niveau de la mer et doit 
être surveillé. C’est aussi l’une des premières victimes du réchauffement climatique. Or, il est 
souvent difficile d’obtenir des données à haute résolution sur ce vaste et lointain continent 
qu’est l’Antarctique. Grâce au programme Copernicus qui donne un accès libre et gratuit à des 
images satellite de haute qualité, le but de ce travail est de montrer la complémentarité entre les 
images radar Sentinel-1 et les données du Modèle Atmosphérique Régional (MAR) au niveau 
de l’Antarctique. Cette étude est menée au niveau de la plateforme de glace du Roi Baudouin. 
La complémentarité entre les données est établie par comparaisons quantitative, temporelle et 
spatiale entre l’information d’amplitude du signal radar et des variables MAR. Les résultats 
obtenus sont prometteurs. Les comparaisons montrent de fortes corrélations spatiales entre les 
variables MAR représentant la fonte et la rétrodiffusion enregistrée par le satellite. Si les ana-
lyses temporelles et quantitatives donnent également de bons résultats, des investigations plus 
profondes sont nécessaires pour expliquer les comportements différents sur d’autres régions 
de la plateforme de glace.
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INTRODUCTION

The Antarctic Ice Sheet (AIS) is the main reser-
voir of continental water, with a potential of 57 
meters sea-level rise, if totally melted. Set on a 
rocky continent, the AIS undergoes gravity-driven 
displacements, spreading itself toward the ocean, 
where the ice sheet dove into the water and starts 
to float, becoming an ice shelf. Surrounding 70 % 
of Antarctica, these ice shelves are all but passive, 

in the sense that ice shelves are constrained by 
topographic elements, either by being locally 
constrained in embayments or by subwater topo-
graphic anchor points (Favier & Pattyn, 2015). 
These elements cause a buttressing effect, playing a 
role in the stabilization of the entire AIS (Goldberg 
et al., 2009). The thinning of these ice shelves is 
caused by various factors including basal and sur-
face melting, with important consequences on AIS 
long-term stability (Payne et al., 2004; Pritchard 
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et al., 2012). The decrease of ice-shelf thickness 
induces an acceleration of the ice discharge and 
a retreat of the grounding line (Pritchard et al., 
2009). This destabilization is further amplified 
in the region of retrograde slopes, where Marine 
Ice Sheet Instability (MISI) plays a determining 
role (Pattyn, 2018). The resulting continental ice 
discharge into the ocean finally produces a sea-level 
rise. Due to global warming, snow and ice melt are 
increasing in polar regions (Wingham et al., 2006; 
Scambos et al., 2013; IMBIE team et al., 2018). In 
the last 40 years, we observed a six fold increase 
in ice discharge in Antarctica (IMBIE team, 2018; 
Gilbert & Kittel, 2021). Even more problematic, 
this phenomenon is ongoing and could increase 
with global warming (Paolo et al., 2015). Finally, 
the presence of melt destabilizes the ice shelf by 
hydrofracturing mechanism. The water percolates 
into crevasses and further widen after refreezing 
events, encouraging glacier retreat and ice cliff 
failure (Pollard et al., 2015).

Collecting in situ data where the ice is melting is 
a challenging task due to the remoteness and the 
size of the continent. Numerous ways of remotely 
observing those places have been developed (Ba-
ghdad, 2000; Nagler & Rott, 2000; Nagler et al., 
2015). At the University of Liege, the Laboratory  
of Climatology is working with the predictive 
model MAR (Modèle Atmosphérique Régional) to 
represent the physics that governs the atmosphere 
and ice sheet. However, while MAR can model 
the melt, uncertainties remain for several reasons. 
Firstly, the consequences of small input errors 
can propagate into larger output errors. Secondly, 
results are provided with a kilometric resolution, 
which is larger than the spatial resolution satellites 
can achieve nowadays. With the ongoing develop-
ment of spatial activity and the launch of more and 
more Earth observation satellites, remote sensing 
became one common technique to monitor polar 
regions at high resolution (Fettweis et al., 2006, 
2011; Nagler et al., 2015, 2016; Lievens et al., 
2019; Shah et al., 2019; Nagler & Rott, 2000). The 
rise of active remote sensing satellites began with 
ERS, and more recently with the Copernicus Earth 
observation program from the European Union, 
making it possible to have near-daily radar images 
at a resolution of around 10 meters in open access 
with the Sentinel-1 constellation. Because the active 
radar satellite output is sensitive to water content, 
it can be used to detect melt in images (Moreira et 

al., 2013). Having a high-resolution technique to 
monitor the climate in remote places makes it pos-
sible to improve geophysical models and to better 
understand the mechanisms of the AIS. 

As explained beforehand, remote sensing of the 
cryosphere is already a vast subject in scientific 
literature. Melt estimation from SAR images counts 
a couple of studies with slight variations between 
the different methods. When studying the melting 
of a thin layer of snow, the melt can be identified by 
an increase of the backscatter as mud has a higher 
backscattering coefficient than snow (Koskinen et 
al.,1997). When studying melt on sea ice or ice shel-
ves, a decrease of the backscattering coefficient σ0 is 
observed as the presence of water in the snowpack 
will increase specular reflection. This leads to a 
rapid change from a value oscillating around 0 dB 
in dry snow to – 20 dB for a wet snowpack.  For 
studying melt on ice shelves in Antarctica, different 
approaches based on σ0 variations are employed. In 
general, a threshold between –3 dB and – 2 dB is 
used for an image normalized to its winter average 
(Johnson et al., 2020) or for a ratio of different 
sources (polarization or a reference image) (Nagler 
& Rott, 2000; Nagler et al., 2016). Recently, Liang 
et al. (2021), proposed a threshold of – 2.66 dB for 
images after “co-orbit normalization”, i.e. normali-
zation of images with an image from the same path 
but from a non-melting period. 

Comparing remote sensing and MAR data has 
already been attempted with a passive satellite 
(Fettweis et al., 2006, 2011), showing the comple-
mentarity between the two datasets. The comple-
mentarity of data leads to the assimilation of MO-
DIS data in MAR to decrease inherent uncertainties 
linked to the use of a numerical model (Navari et 
al., 2016, 2018).

The objective of this work is to demonstrate the 
complementarity of Synthetic Aperture Radar 
satellites – SAR – and a regional climate model 
– MAR – for the estimate of melting. In order to 
analyze the similarities and differences of the two 
datasets, a comparative approach is undertaken. 
First, data is compared temporally to see if the melt 
is observed and modelized at the same time. Then, 
when the melt season is identified, the quantity of 
melt is estimated through the surface of the region 
of interest covered by melting ice and snow. Finally, 
a spatial comparison is conducted to demonstrate 
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the spatial variabilities of the differences between 
the data.

The study is conducted over the Roi Baudouin Ice 
Shelf (RBIS, –24° to –33° East), and its surroun-
dings, in the Dronning Maud Land, East of An-
tarctica (Figure 1). RBIS is a 30 000 km² ice shelf 
situated near the Belgian Princess Elisabeth station. 
It is characterized by its long-term stability, but 
also by its wide melt season extend (Drews, 2015; 
Berger et al., 2016; Callens et al., 2016).

I. DATA PRESENTATION

A. MAR Data

MAR modelling results are gathered in a set of 
NetCDF files. NetCDF is a common self-document 
data format used in geosciences for data exchange. 
It can be seen as a multidimensional datacube. Two 
of the dimensions are the X and Y coordinates while 
the third one is time. In our case, each file contains 
one of the six chosen variables to study. Those va-
riables have similar image size, pixel size, and time 
resolution (Table 1). The variables are: (i) ME: the 
melt variable. As SAR has strong interactions with 
liquid water, this variable would be best correlated 
with SAR under standardized conditions. As shown 
in figure 2, ME varies during year, reaching peak 
value of 10 kg / m² / day. (ii) RO1: the snow den-
sity. Divided into the same layers as WA1 (cf. vi), 
it is not used to be compared directly to SAR data. 
Together with WA1, it is used to create a variable 
that represents the relative quantity of water in the 
snowpack. Typical values of RO1 reach 400-450 

Figure 1. RBIS: the area of interest in East Antarctica. 
Parts of Prince Harald and Borchgrevink ice shelves 
are also included in the area as well as the Derwael ice 
rise and the Riiser-Larsenhalvøya ice ridge (basemap: 
Quantarctica – Matsuoka et al., 2021, modified)

kg / m³ on the ice shelf and 600 kg / m³ at the south 
of the zone. (iii) RU: this variable represents the 
surface runoff caused by both melt and rainwater. 
SAR backscatter can change with both, but only the 
meltwater fraction is studied here. (iv) SMB: the 
surface mass balance is linked with ablation phe-
nomena and thus may be correlated with the radar 
cross-section. SMB is calculated as the thickness 
change of the snowpack. It can be approximated 
by the sum of all the processes that cause accu-
mulation or ablation. On ice shelves in Antarctica 
SMB tend to stay quite low and constant with a few 
kg / km² / day. (v) SU: sublimation is the change 
from solid-state to gas without passing through the 
liquid phase. If it is the liquid water that is detected 
with SAR, for the sublimation process to occur, 
snow needs heat as it is an endothermic reaction. If 
there is heat, melting may occur and cause the SAR 
cross-section to vary. (vi) WA1: WA1 is the liquid 
water content of snow layers. The file is divided 
into ten bounds / layers of snow representing the 
first meter of depth. WA1 can be compared with 
SAR thanks to the ability of radar frequency to 
penetrate the soil. During strong melting periods, 
in the first meter of depth, liquid water content of 
the snowpack can reach a few percent of the snow 
mass. A summary of all variables is displayed in 
table 1.

For the variables ME and WA1, melt or significant 
presence of water are considered when the value 
of the variable is higher than 0.1. This value is 
then used to create the melting mask used for the 
quantitative comparison conducted in part III. B.

B. SAR Data

In this study, we used SAR images from the 
Sentinel-1 mission. It refers to a constellation of 
two active radar satellites. Sentinel-1 is the first 
mission of the European Space Agency (ESA) 
for the Copernicus initiative. Copernicus brings a 
paradigm shift in the use of remote sensing data. 
The program aims to provide free, open-access, 
and high-quality data. The two satellites consti-
tuting the constellation (S1A and S1B) work in 
the C band (5.45 GHz), allowing night and day 
imagery. With a revisiting time of 12 days, and 
a near-polar Sun-synchronous orbit, the S1A and 
S1B allow a revisit time of 6 days. The first satel-
lite – S1A – has been launched in April 2014 for a 
7-year mission. In this study, we use data acquired 
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Variable Unit Image size (km) Pixel size (km) Time Interval
ME kg / m2 / day 750 × 720 5 × 5 1 / day
RO1 kg / m3 750 × 720 5 × 5 1 / day
RU kg / m2 / day 750 × 720 5 × 5 1 / day

SMB kg / m2 / day 750 × 720 5 × 5 1 / day
SU kg / m2 / day 750 × 720 5 × 5 1 / day

WA1 kg / kg 750 × 720 5 × 5 1 / day

at single and dual polarizations, in interferometric 
wide (IW) and extra-wide (EW) swaths. For this 
paper, only the comparison with HH (signal send 
with a horizontal polarization and received in 
the same way) polarization is used as the conclu-
sion for the cross polarization HV (signal send 
horizontally but received vertically) is the same. 
Over our region of interest, the local period of 
the descendant node is around 6 PM. The data is 
retrieved from the Alaska Satellite Facility (ASF, 
2021). To preserve the 6 days revisit time of S1A 
and S1B, the analysis starts in 2016. 1 417 images 
were used to conduct the analysis. Multiple orbits 
are used to ensure consistent spatial coverage with 
MAR data. MAR output temporal resolution can 
be defined according to the user’s needs, but SAR 
has physical limitations. Even if all the possible 
data is used, data gaps occur and cause holes in 
the comparison. Nevertheless, the spatial reso-
lution and pixel size are much finer than MAR. 
Ground-Range-Detected (GRD) products at high 
and medium resolution are used for this analysis. 
These images have a pixel spacing of 10 by 10m 
and 40 by 40m, respectively.

As explained in the introduction part, the threshold 
applied for the binary classification used for the 
quantitative comparison (cf. III. B) is discussed 
in the literature. The choice is to follow the -2.6 
dB threshold proposed by Liang et al. (2021). The 
co-orbit normalization is not performed as the ice 
on the iceshelf shows a mean σ0 oscillating around 
0 dB. 

II. COMPARISON

A direct consequence of the different pixel sizes, 
coverages and data formats between SAR and 
MAR is the inability to perform a direct compari-
son without converting the data. For this project, 
the choice is to downgrade SAR pixel spacing to 
the 5 km MAR pixel spacing and mosaicking SAR 
images. A resampling was then included in the 
SAR processing chain to get images with a 5 by 
5 km spatial spacing. The resampling is made with 
SNAP software (Brockmann et al., 2020), using the 
default parameters of the Range Doppler Terrain 
Correction function with the TanDEM-X elevation 
model data originating from the German aerospace 
center as used in the frame of the MIMO project 
(for details see Glaude et al., 2020). The mosaic 
is created from a Python script. The value of each 
pixel composing the mosaic for a given date is cal-
culated using linear interpolation (or extrapolation) 
between the values of two overlaying images. The 
two chosen images are the couple with the smallest 
time gab between their acquisition and the given 
date for the mosaic. 

A mosaic is created every six days to match the six 
days revisit time of the satellites. The first date of 
the study is not chosen randomly. It is set in 2016 
to benefit from Sentinel A and B and between the 
acquisition of paths 59 and 88, covering most of the 
studied zone. The mosaicking of the SAR images 
is advantageous for different reasons. First the mo-
saic from multiple SAR images allows us to create 

Table 1. MAR variables used for this study. ME: melt, RO1: snow density, RU: runoff, SMB: surface mass balance, 
SU: sublimation, WA1: liquid water content

Pol . Coeff . (dB) Acquis. Pixel size (m) Time Interval
HH σ0 IW & EW 10 × 10 & 40 × 40 1 / 6 days
HV σ0 IW & EW 10 × 10 & 40 × 40 1 / 6 days

Table 2. SAR Data used for this work. Four distinct types of data that are used together, depending on the polari-
zation and acquisition mode
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maps covering the entire studied region. Such maps 
offer a synoptic representation of data and under-
lying phenomena, and they are the basis of spatial 
analysis. Secondly the use of different paths and 
orbits can induce variations of σ0 and interpolating a 
value from multiple images mitigates the variation. 
Finally, it allows a perfect co-registration of the two 
datasets by creating a grid over MAR images. This 
co-registration is ensured by the interpolation of 
the different layers on the same grid. The upper left 
corner of MAR and SAR products are coherent, as 
well as the pixel spacing. The coordinate reference 
system uses is the Antarctic Polar Stereographic 
projection (EPSG: 3031).

However, mosaicking can also lead to artifacts. 
The major problem is the occurrence of extreme 
extrapolated values in the case when no data is 
available in the six days before or after the desired 
date. A filter is used to reduce the number of extreme 
values. Furthermore, by interpolating between two 
images recorded near 6 PM, the intra-daily varia-
tions in σ0 are omitted. Dates when the mosaic had 
an inadequate quality are removed.

The comparison is made between the satellite data 
and all the MAR variables previously presented. 
In the paper, we focus on the results with ME, the 
variable representing melt, because it is the most 
consistent with the observation of the satellite.

A. Temporal

SAR and MAR datasets are first directly compared 
together. The evolution of the quantity of melt 
and of σ0 averaged on the ice shelf is displayed in 
figure 2. A synchronism appears clearly between 
the decrease of σ0 and the increase in the quantity 
of melt modelled by MAR. The opposite varia-
tion is straightforward since the increase in water 
concentration in the snowpack leads to a mirror 
effect in the SAR signal, resulting in a decrease of 
σ0. However, if the decrease and increase seem to 
be negatively correlated, it is not the case of the 
intensity reached by the peaks. The maximum and 
minimum are not happening for the same melt sea-
son and, no matter the quantity of melt modelled by 
MAR during melt seasons, the same σ0 is observed 
at –15 / –20 dB. Furthermore, a small temporal shift 
of one or two weeks between the increase and the 
decrease is observed. There are two hypotheses to 
explain that shift. First, MAR tends to model melt 

too early. Second, a certain quantity of liquid water 
in the snowpack is required for a change to occur 
in σ0. Further investigations are needed to test the 
two hypotheses.

Figure 2. Comparison between SAR σ0 and MAR melt 
for the studied period of 2016-2021. The opposite vari-
ation of the couple of data is explained by the decrease 
of σ0 caused by the presence of water. Even if the peaks 
occur at the same time, the increase of ME starts before 
the decrease of σ0

Another temporal comparison is conducted through 
the construction of two maps: a first one regarding 
the correlation between σ0 and ME and, a second 
based on a probability (Equation 1). The correlation 
map (Figure 3A) uses the value of σ0 observed by 
the satellite and the ME values given by MAR 
throughout the whole period studied. With those 
values, the Pearson’s r is calculated for each pix-
el, considering every value obtained for the pixel. 
Roughly 300 couples of ME and σ0 values are 
used at each pixel for the calculation. The visual 
interpretation of the result shows strong negative 
correlation values (~ –0.75) on the ice shelf and 
lower negative correlation over the slopes and the 
surrounding ice shelves (~ –0.1). Overall, a gradient 
appears on the image, with strong correlations near 
the limit between the ice shelf and the ocean and 
decreasing toward inland. 

The probability map (Figure 3B) represents the 
conditional probability of MAR modelling melt 
given SAR observes it. Following equation 1, this 
probability is calculated as the ratio between the 
probability of SAR and MAR both modelling melt 
and the probability of SAR observing melt. A high 
probability (~ 90 %) appears on the ice shelf while 
a low (~ 10 %) probability concerns the blue ice 
areas, the slopes, and the Prince Harald ice shelf. 
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Figure 3. A) Correlation map between SAR σ0 backscat-
tering coefficient and MAR ME. B) Conditional proba-
bility representing the probability of MAR to detect melt, 
considering SAR observes melt. For both maps, the ice 
shelves present higher values than over the problematic 
zones described in part III. B. 

The low value is due to the SAR over observation 
of melt in the above-mentioned zones, caused by a 
threshold choice too high for the zone. On the other 
hand, the high probability results from the fact that 
ME is modelled a week or two before and after the 
observation by SAR. 

(1)

In equation (1): X states for MAR modelling melt 
and Y for SAR observing it.

B. Quantitative

The quantitative analysis is based on the surface melt 
comparison determined by SAR and by MAR. The 
comparison is performed on the percentage of the 
area covered by melt, pixel by pixel, after a binary 
classification (melt – no melt) of the two variables has 
been achieved. The melt volume is thus not included 
in the analysis. Quantifying the melt volume with 
SAR would deserve more consideration. In figure 
4, the time shift is also visible. Melt modelled in the 
ME variable covers the studied zone before SAR 
observed a decrease in σ0 and thus before SAR ob-
served an evolution of the surface melt area. The melt 
modelled area first appears larger than the observed 
one, before converging to a similar value covering the 

majority or even the entire studied zone. However, 
figure 4 also shows the effect of the threshold choice. 
During the study, a constant melt cover is detected 
of about 10 to 20 %. There is no period where SAR 
detects no melt over the studied zone. The cause is 
to be found in the lack of normalization of the SAR 
images and the use of a constant threshold instead 
of a spatially varying one. This resulting melt is 
mainly located on the slopes – the Prince Harald 
ice shelf – and the bottom of the slopes, where blue 
ice is located. When removing these areas from the 
analysis, the effect is mitigated, and the covered area 
matches better (Figure 5). 

Figure 4. Comparison between SAR and MAR observed 
liquid water. The comparison is established with the 
percentage of the area covered by melt. The values for 
the peaks are equivalent except for the 2021 melt season 
and the summer period. The difference for 2021 is due to 
the temporal shift, still visible in the graph. The summer 
difference is caused by the threshold choice

Figure 5. Comparison between SAR and MAR observed 
liquid water. Graph is identical to figure 4 but the prob-
lematic areas have been removed. The differences have 
decreased but the 2016 melt season has disappeared 
from SAR
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Another major difference is the start of the mod-
elled 2021 melt season which covers up to 90 % 
of the image while it is not observed by SAR. This 
difference can also be noted in 2016 when the 
studied zone is restrained. 

C. Spatial

The spatial comparison is carried out by analyzing 
SAR and MAR outputs with the Moran’s I index 
(Goodchild, 1986). Spatial autocorrelation is the 
variation of an event with itself in space. An index 
value of 1 (or -1) reflects a strong positive (or 
negative) spatial autocorrelation, meaning high 
values tend to have neighbors with high (or low) 
values. Neighborhood of a pixels is constructed 
with a queen-contiguity (8-connexe) at the second 
order (neighbors of neighbors). The spatial analysis 
is carried out with the space section of the GeoDa 
software (Anselin et al., 2006).

The Moran’s I value (Figure 7A) is significant 
(0.786) (9999 random permutations test) for the 
correlation map (Figure 3A). The visual inter-
pretation of the map performed for the temporal 
analysis is corroborated by the local index analysis 
(LISA) completed (Figure 6). Values on the slopes 
are considered as significantly “high-high” (high 
values surrounded by high values), while the ice 
shelf is considered as “low-low” (low values sur-
rounded by low values). Topography is then one 
of the main factors influencing the data variations 
concerning the correlation as the r coefficient is 
mainly constant on flat surfaces and tend to vary 
in areas with strong topographical relief.

For the probability map, Moran’s I (Figure 7B) is 
also (pseudo-)significant (0.775). However, in this 
case, the nature of the ice also seems to be significant 
to explain the differences between the two variables. 
Nevertheless, it is important to remember that the 
threshold choice has an impact on the probability as 
it uses the binary classification of ME and σ0.

So far, the spatial analysis carried out has been 
limited to the use of simple indicators. More can 
be done to complete this aspect of the research. 
First of all, we should explore in more depth the 
spatial and temporal cross-correlations. Then SAR 
and MAR data could be investigated by means of 
a geographically weighted regression in order to 
analyze the spatial variation of their relationship. 

CONCLUSION AND DISCUSSION

In this study, we analyzed the comparison of melt 
prediction from two independent methods. On the 
one hand, we are requalifying the backscattering 
coefficient of SAR remote sensing into a melt / not 
melt binary classification. On the other hand, we 
are studying the presence of estimated melt using 
MAR climate model.

The results show the complementarity nature of 
the two datasets. It must be kept in mind that the 
studied area is firstly modelled by MAR before 
SAR records it. The temporal shift between ME 
and σ0 can mainly be caused by the need for a 
certain quantity of water in the snowpack before 
observing a variation of σ0. This trend of modelling 

Figure 6. A) Clusters of neighbors, classified according 
to their LISA index. B) p-value for the LISA indexes, 
with 9999 permutations. Both maps are constructed for 
the correlation map

Figure 7. Moran’s I scatterplot for the maps presented at 
figure 3. The blue dots represent pixels. The X axe is the 
standardised value of the pixel and Y the mean standard-
ised value of the neighbourhoods. A) Pearson’s r: Moran’s 
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melt before and after SAR melting observations is 
also visible in the temporal variation of the melt 
surface. This consideration aside, the peaks of the 
melt coverages for the two datasets are consistent 
with each other (but for the 2021 melt season as 
it did not start for SAR). The SAR observation of 
melt during winter is due to the choice of –2.6 dB 
for the melt threshold.  That is too high for some 
zone that presents lower values in non-melting 
periods. These zones are highlighted by the 
spatial analyses carried out with the correlation 
index and the probability map. Problematic zones 
have lower probabilities and lower correlation 
coefficients. However, the results show strong and 
statistically significant Moran’s I on the ice shelf, 
blue ice, and the slopes.

Nevertheless, results could be greatly enhanced 
by the normalization of SAR images as proposed 
in Liang et al. (2021) or the use of a spatially 
variable threshold.

It would be also possible to conduct the experiment 
on a larger zone and at a better spatial resolution to 
benefit from the high resolution of the Sentinel-1 
SAR imaging capabilities.

Finally, MAR and SAR showed similarities for 
most of the studied zone, and the dissimilarities 
were observed where the terrain is different, 
whether because of the nature of the ice or the 
topography.  Further analysis of their differences 
would benefit the ice sheet modelling field.
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